Программное обеспечение МультиХром версии 3.х с хроматографами Орлант

Краткая инструкция по установке и началу работы

АМПЕРСЕНД

2024

КОНТАКТЫ

E-mail: <u>support@ampersand.ru</u> ("горячая линия")

Интернет: www.multichrom.ru

Телефон: (499) 322 99 61, (916) 675 25 92

Почтовый адрес: 117437, г. Москва, ул. Островитянова, д. 25к1, кв. 121.

ООО "Амперсенд" (С отслеживанием)

ТОВАРНЫЕ ЗНАКИ И ТОРГОВЫЕ МАРКИ АВТОРСКИЕ ПРАВА

МультиХром, АМПЕРСЕНД - ООО "АМПЕРСЕНД" MS WINDOWS - Microsoft, Corp.

© ООО "АМПЕРСЕНД"

Исключительное право тиражирования программы *МультиХром* и ее документации принадлежит ООО "АМПЕРСЕНД" и охраняется законодательством Российской Федерации, Всемирной Конвенцией по авторским правам, а также прямыми обязательствами официальных пользователей, оговоренными в лицензионном соглашении.

ВВЕДЕНИЕ	4
УСТАНОВКА И ЗАПУСК МУЛЬТИХРОМА4	
ЗНАКОМСТВО С ИНТЕРФЕЙСОМ	6
КАК СОЗДАТЬ СИСТЕМУ	9
Создание системы с помощью Мастера новых систем.	9
Запуск Мастера	
Добавление внешних устройств	
Добавление внутренних устройств	10
Подключить управление внешними устройствами	
Настройка самописца	
Окно системы	
Создание системы путем модификации	14
КАК ПОЛУЧИТЬ ПЕРВУЮ ХРОМАТОГРАММУ	15
Выбор анализа для первой хроматограммы	15
Запуск анализа	15
Прием хроматограммы	16
Завершение анализа	17
Настройка алгоритма интегрирования	18
Перезапись хроматограмм и внесение изменений в метод	19
ПРОСТЕЙШИЙ ВАРИАНТ ОБРАБОТКИ И ОФОРМЛЕНИЯ РЕЗУЛЬТАТОВ	20
Получение простого отчета с использованием метода Нормировка отклика	
О других методах расчета	21
КАК ВЫПОЛНИТЬ ГРАДУИРОВКУ	22
ПЕРВЫЙ ЭТАП: ВВОД ДАННЫХ ГРАДУИРОВОЧНЫХ ОБРАЗЦОВ.	22
Создание Таблицы компонентов	23
Создание Таблицы концентраций	24
Второй этап: получение набора градуировочных хроматограмм.	28
Получение хроматограмм перезапуском системы вручную	28
ПРИЛОЖЕНИЯ	31
ПРИЛОЖЕНИЕ 1. ИСПОЛЬЗОВАНИЕ USB-COM-КОНВЕРТЕРА	31
Приложение 2. Некоторые свойства систем	32
Как открыть систему	32
Состояние системы: Подключено/Отключено	32
Особенности работы в режиме перезапуска хроматограмм	33
Приложение 3. Редактор пиков	34
Как удалить или добавить пики	35
Как переместить границы или вершину пиков	35
Как из смежных пиков сделать пик с пиком-наездником	36

Введение

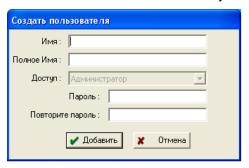
Главной особенностью программного обеспечения *МультиХром, версия 3.х* (далее MX 3.х) является объединение функций интегрирующей и управляющей версий, ранее реализовавшихся отдельно в виде линий MX 1.х и MX 2.х. При этом в основу положена концепция организации работы на основе *систем*, созданная в рамках линии MX 2.х. Системы являются основным инструментом при проведении хроматографического анализа.

Система содержит сведения о составе и настройках оборудования, сценарий его работы при проведении анализа и указание на метод обработки получаемых хроматографических данных. Таким образом, система хранит в себе все необходимые данные для проведения хроматографического анализа. Если выполняются анализы нескольких типов, для каждого из них создается отдельная система. Это позволяет не только быстро повторять однотипные анализы, но и переходить к анализу другого типа без потерь времени на изменение настроек.

Параметры обработки *хроматограммы* записываются в **методе**, к которому по мере необходимости обращается система. Такое разделение процедур приема и обработки данных позволяет легко переносить выбранные параметры обработки между системами, внося необходимые коррективы без необходимости выполнять всю процедуру настройки в полном объеме.

Результаты выполненного анализа записываются в **хроматограмме**. Хроматограмма содержит все принятые данные в полном объеме, а также параметры метода, что позволяет представлять хроматографическую информацию, обработанную требуемым образом, а также, при необходимости, проводить повторную обработку с изменением параметров. Кроме того, хроматограмма содержит сведения, достаточные для воссоздания системы, использованной при проведении анализа.

Далее будет рассмотрен пример установки МХ 3.х при использовании для работы с хроматографом *Орлант* в следующей конфигурациях:

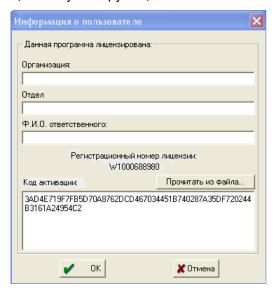

- блок насосов (БН)
- ручное устройство для ввода пробы (УВП)
- спектрофотометрический детектор на УФ-диапазон (СФД УФ) или флуориметрический детектор (ФМД) для конфигурации 122 и 322 соответственно.

Установка и запуск МультиХрома

Программа МХ 3.х работает под управлением ОС *Microsoft Windows XP, SERVER 2003, Vista, Windows 7, 8, 8.1, 10 (32 и 64 бит),* поэтому на компьютере должна быть установлена лицензионная копия одной из указанных операционных систем (рекомендуется русская версия).

- Для установки ПО *МультиХром* пользователю необходимо иметь права *Администратора*!
- Для подключения оборудования компьютер должен иметь необходимое количество СОМ или USB-портов, а также дополнительный USB-порт для установки защитного устройства (ключа).
- Подключите хроматографическое оборудование к компьютеру согласно документации к этому оборудованию. Обратите особое внимание на рекомендации по выполнению заземления.

- 㳇
- Если какие-либо устройства подключаются через ранее не использовавшийся USB-COM-конвертер, необходимо предварительно ознакомиться с рекомендациями, содержащимися в *Приложении 1*.
- Включите компьютер и вставьте в дисковод CD-ROM диск с дистрибутивом из комплекта поставки.
- Установите ПО *MX 3.x*, запустив на CD-ROM файл *setup.exe*. По окончании установки на рабочем столе появится ярлык программы
- Установите драйвер защитного устройства (ключа): откройте на диске папку Sentinel LDK Run-time setup и запустите файл HASPUserSetup.exe.
- Установите защитное устройство-ключ в свободный USB-порт, при этом должен загореться индикатор на конце ключа.
- 近 Если индикатор не загорелся в течение нескольких минут, следует вынуть и вновь вставить ключ в USB-порт. В случае неудачи рекомендуется проверить исправность порта.
- Запустите программу, щелкнув мышкой¹ по ярлыку откроется главное окно программы, в котором будет открыто окно **Создать пользователя**. Хотя бы один пользователь должен быть создан обязательно поля этого окна нельзя оставить пустыми.


• В поле **Имя** введите любое удобное для постоянной работы имя, которое будет использоваться для входа в систему.

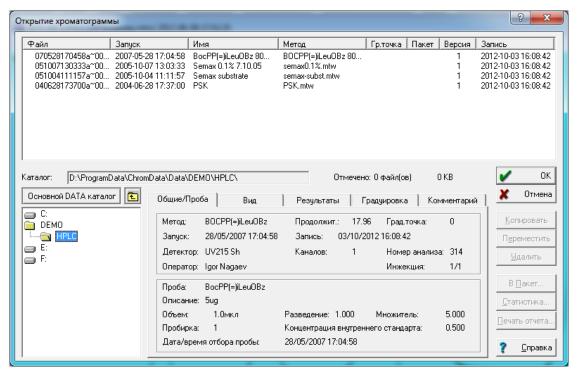
- В поле **Полное имя** введите имя пользователя, под которым он будет представлен во всех создаваемых записях, в том числе, в итоговых документах.
- В поле **Пароль** введите пароль (не менее 2 знаков) и повторите его в поле **Повторите пароль**.
- ◆ Если все поля заполнены правильно, нажмите кнопку **Добавить**. После выполнения этого действия данные вводятся в список пользователей и изменение имени и пароля становится невозможным. Первый пользователь автоматически получает уровень доступа *Администратор*, далее вход в систему возможен только под его именем.

¹ То есть, установите курсор на изображение (ярлык, кнопку, пиктограмму) и однократно нажмите *певую* кнопку мышки (в случае кнопки для этой же процедуры может использоваться выражение «нажмите кнопку»). Выполнению такой же процедуры с помощью *правой* кнопки мышки соответствует выражение «щелкните *правой* кнопкой мышки»)

• После создания первого пользователя откроется окно **Информация о пользователе**, в котором в поле **Регистрационный номер лицензии** будет указан номер устройства-ключа, начинающийся с буквы W², а в поле **Код активации** будет показан код активации, соответствующий регистрационному номеру лицензии.

- Заполните поле Название организации если это поле оставить пустым, окно Информация о пользователе будет открываться при каждом запуске программы.
- Закройте окно, нажав кнопку **ОК** программа готова к работе.

Знакомство с интерфейсом


Управление работой программы производится командами *меню*, которое расположено под заголовком *главного окна* программы. Основные команды дублируются *кнопками* расположенной под ним *панели инструментов*³. Большая часть команд относится к управлению хроматограммой, поэтому они активированы только тогда, когда открыта хотя бы одна хроматограмма.

Нажмите кнопку (команда Файл/Открыть/Хроматограмму) – откроется окно
Открытие хроматограммы, главными элементами которого является список
хроматограмм, а также область для просмотра содержимого выделенной хроматограммы.
В поставку для примера включено несколько хроматограмм.

² Номер ключа виден только в случае, когда он подключен, о чем свидетельствует горящий индикатор ключа.

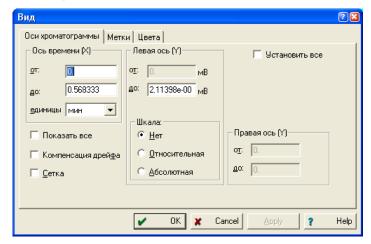
³ Далее в *Руководстве* для выполнения действия при наличии кнопки будет указываться: «нажмите кнопку» или «щелкните мышкой по кнопке», а в скобках – дублируемая команда: (команда [Меню]/[...]/[Команда]).

- Ознакомьтесь с тем, какая информация о хроматограммах выводится в окно **Открытие хроматограммы**
 - Выделите какую-либо хроматограмму, щелкнув по ней мышкой.
 - ◆ Щелкая мышкой по закладкам **Паспорт**, **Вид**, **Результаты**, **Градуировка**, **Комментарий**, просмотрите представляемую информацию.
 - Перейдите к другой хроматограмме в списке, произойдет соответствующая смена выведенных данных, при этом остается открытой та же закладка.
- Выделите несколько хроматограмм, щелкая по ним мышкой при нажатой клавише *Shift* для выбора строк подряд или *Ctrl* для выбора строк вразбивку и нажмите кнопку **OK**. Откроются окна выбранных хроматограмм, расположеннее *каскадом*.

С окнами хроматограмм можно выполнять следующие действия:

располагать не только каскадом, но и в виде *вертикальной* или *горизонтальной* мозаики, используя кнопки \square или команды меню **Окно**;

перемещать окно, перетаскивая его мышкой за заголовок;


изменять размер, передвигая мышкой его границы, а также используя стандартные кнопки 📴 и 垣;

сворачивать окно кнопкой **и** восстанавливать кнопками **и** и и или выбором соответствующей строки в меню **Окно**, которое содержит полный список открытых хроматограмм;

закрывать по отдельности кнопкой 🚨 или все сразу – командой Окно/Закрыть всё.

- Для управления видом хроматограммы в окне удобнее всего использовать мышку и определенные сочетания клавиш. Для этого также предназначены команды меню **Вид** и набор специальных опций, объединенных в окне **Вид**. Ознакомьтесь с некоторыми полезными приемами.
 - Щелкните *правой* кнопкой мышки в окне хроматограммы рядом откроется меню **Вид** со списком команд и дублирующих их сочетаний клавиш;

- Выделите мышкой участок графика он будет увеличен до размера всего окна.
- Дважды щелкните мышкой в окне хроматограммы восстановится полный размер хроматограммы. С той же целью можно нажать кнопку Вид/Все или использовать клавиши Alt+V.
- ◆ Для растяжения/сжатия хроматограммы по *вертикали* используйте клавиши ↑/↓, для передвижения всего графика по вертикали клавиши *PgUp/PgDn*. Восстановление размеров по вертикали производится командой **Вид/Все по вертикали** или клавишами *Ctrl+End*.
- Для растяжения/сжатия хроматограммы по *соризонтали* используйте клавиши [→]/[←]. Если в окне представлен некоторый участок хроматограмм, внизу появляется полоса прокрутки, с помощью которой выделенный участок можно перемещать вдоль графика. Восстановление размеров по горизонтали производится командой **Вид/Все по горизонтали** или клавишами *Ctrl+Home*.
- Нажмите кнопку (команда **Вид/Вид**) откроется окно **Вид**, содержащее 3 закладки: **Оси хроматограммы**, **Метки**, **Цвета**.

- Среди многочисленных опций, представленных в окне **Вид**, обратите внимание на следующие:
 - ◆ единицы по оси X на графике задаются на странице Оси хроматограммы⁴;
 - ◆ метки пиков задаются на странице **Метки** можно выбрать, например, вместо номеров пиков названия компонентов;
 - на странице **Цвета** можно выбрать различные *цвета фона* окна хроматограммы, что может быть полезно при одновременной работе с несколькими окнами, на этом же странице можно изменить *цвет* и *толщину линий* на графике;
 - флажок **Установить все** обеспечивает внесение изменений одновременно во всех открытых хроматограммах (это относится только к той странице, на которой установлен флажок.

Дє Действие флажка **Установить все** относится только к той странице, на которой он установлен. Например, чтобы одновременно изменить цвет фона и указать для пиков вместо номеров имена компонентов на всех открытых хроматограммах, необходимо установить этот флажок и на странице **Метки**, и на странице **Цвета**.

⁴ Единицы по оси У задаются в окне **Настройка каналов** (открывается командой из меню **Метод**).

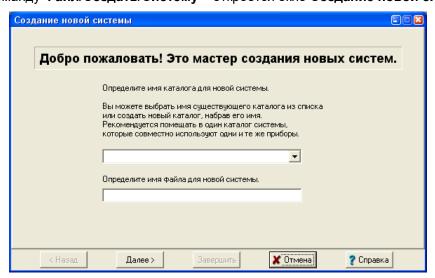
При закрытии хроматограммы все сделанные изменения ее вида отменяются без предупреждения. Для того чтобы они сохранились, необходимо записать хроматограмму.

Завершив ознакомительную процедуру, закройте все окна и приступайте к созданию своих систем.

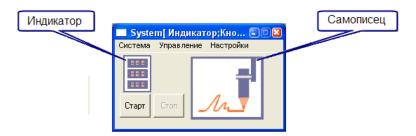
Как создать систему

Система является основным инструментом при проведении хроматографического анализа. Каждая система предназначена для выполнения анализов одного типа, который характеризуется, во-первых, составом и режимами работы используемого оборудования, вовторых, методом обработки получаемых хроматографических данных. Наиболее важной отличительной характеристикой метода является набор определяемых компонентов с временами удерживания и, при необходимости, градуировочными зависимостями для каждого из них, измеренными для данной системы. Таким образом, пользователю потребуется создать столько систем, сколько типов анализов ему требуется выполнять – даже в том случае, когда используется одно и то же оборудование, работающее в одном и том же режиме. Системы могут создаваться с помощью *Мастера новых систем*, а также путем модификации ранее созданной системы – последний способ значительно проще, в особенности для систем с одним и тем же составом оборудования, но его можно использовать после того, как создана хотя бы одна система.

Для пользователей версии MX 1.5x:

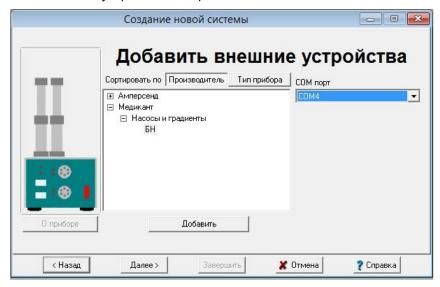

В версии 3.х *система* по своему назначению является инструментом, аналогичным *методу* в версии *1.5х*.

Создание системы с помощью Мастера новых систем


Для создания системы выполните следующее.

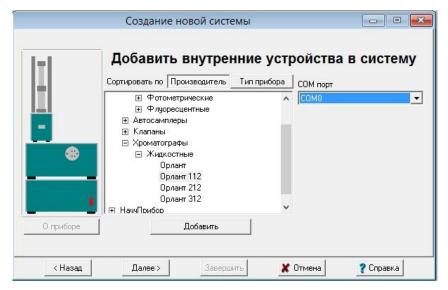
Запуск Мастера

• Выберите команду Файл/Создать/Систему – откроется окно Создание новой системы.


Одновременно в конце пиктографического меню рабочего стола появляется дополнительная кнопка и создается окно системы, в котором по умолчанию установлены 2 *виртуальных* устройства: *индикатор* и *самописец*, а также кнопки *Старт-Стоп*.

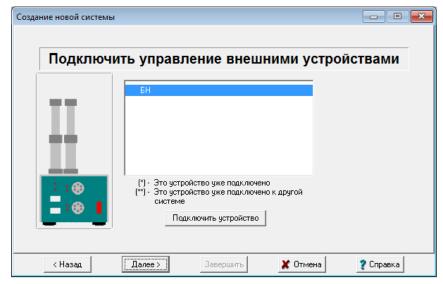
- Введите в поле имя каталога для новой системы желательно, чтобы оно было связано с характером анализа, для которых предназначена система.
- Нажмите кнопку **Дальше** произойдет переход на следующий лист, на котором производится установка на рабочий стол *внешних* устройств

Добавление внешних устройств


- Нажмите кнопку **Дальше** произойдет переход на следующий лист, на котором производится установка на рабочий стол *внешних* устройств, к которым относится *блок насосов* (БН).
- Установите на рабочий стол БН.
 - В списке групп устройств установите сортировку по производителю, а затем выберите группу *Медикант*...
 - В открывшемся списке устройств выберите БН.

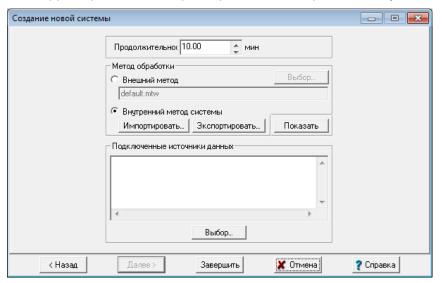
- В поле СОМ порт выберите СОМ-порт, к которому подключен блок насосов.
- Нажмите кнопку Добавить на панели инструментов добавится значок БП

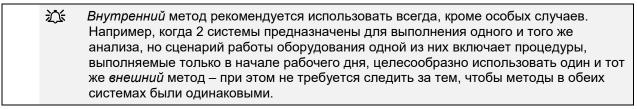
Добавление внутренних устройств


- Нажмите кнопку **Дальше** произойдет переход на следующий лист для добавления *внутренних* устройств, то есть, таких устройств, которые управляются создаваемой системой и входят в ее состав.
- Для установки детектора выполните следующее.
 - Откройте список устройств *Медикант* и далее перейдите к группе *Детекторы* /Фотометрические или *Детекторы*/Флуоресцентные.

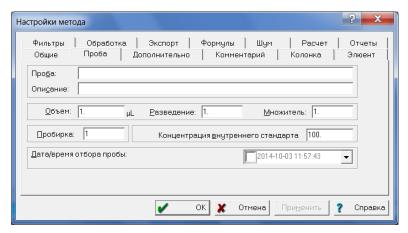
- Выберите требуемый детектор.
- В поле **СОМ порт** выберите СОМ порт, к которому подключен детектор.
- Нажмите кнопку Добавить в окно системы добавится пиктограмма прибора.
- Нажмите кнопку Добавить в окно системы добавится пиктограмма детектора.
- Для установки инжектора УВП детектора выполните следующее.
 - Выберите группу Медикант/Клапаны/Инжекторы.
 - В открывшемся списке устройств выберите 3-х позиц. Ручной инжектор.
 - В поле СОМ порт выберите СОМ-порт, к которому подключен инжектор.
 - Нажмите кнопку **Добавить** в окно системы добавится пиктограмма инжектора.

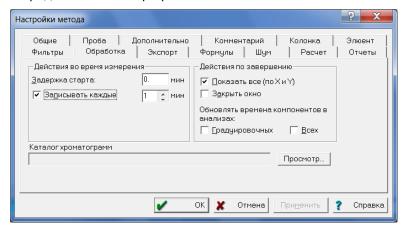
Подключить управление внешними устройствами


• Нажмите кнопку **Дальше** — откроется лист для подключения управления внешними устройствами. В создаваемой системе требуется подключить блок насосов.


• Выделите строчку *БН* и нажмите кнопку **Подключить устройство**. В окне системы добавится пиктограмма БН.

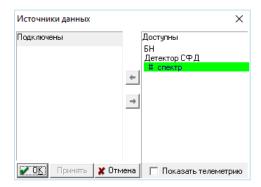
Настройка самописца


- Нажмите кнопку **Дальше** откроется окно драйвера самописца, котором производится настройка метод и выбор источников данных. Окно содержит поле **Продолжительность** и 2 области: **Метод обработки** и **Подключенные источники данных**.
- Если заранее известно, сколько времени должен продолжаться прием данных, эту величину можно ввести в поле **Продолжит.** По умолчанию хроматограмма будет приниматься в течение 10 мин, но ее можно остановить раньше или продлить время приема, а затем скорректировать этот параметр в методе по фактическому значению.


• Произведите настройку метода обработки, используя установленный по умолчанию **Внутренний метод системы**. Все настройки внутреннего метода записываются в файл метода [имя системы].mtw, который хранится в одном каталоге с файлом системы.

- ◆ Нажмите кнопку **Показать** откроется *окно метода*, представляющее собой окно хроматограммы без данных, с белым фоном.

- ◆ На странице **Общие** введите в поле **Имя** краткую запись, по которой будет удобно находить хроматограммы, полученные с использованием создаваемой системы, в окне **Открытие хроматограммы**. Введите также в поле **Детектор** имя используемого детектора.
- Просмотрите параметры, представленные на страницах **Колонка** и **Элюент**, и введите те из них, которые важны как характеристика метода, должны быть представлены в отчете или используются в расчетах для получения подробной информации нажмите кнопку **Справка** (**Help**).
- ◆ На странице Обработка установите флажки, как показано на рисунке в этом случае по окончании хроматограммы ее окно останется открытым, и в нем будет полностью представлен весь график.


- При первоначальной настройке метода не требуется вводить информацию на остальных страницах окна **Настройки метода** закройте его, нажав кнопку **ОК**.
- ◆ Закройте *окно метода*, нажав кнопку <a>М. При этом появится запрос подтверждения сохранения сделанных изменений запишите метод, нажав кнопку <a>Да (Yes).

Для пользователей версии MX 1.5x:

Методы, ранее созданные для версии *МХ 1.5х,* можно импортировать для использования с версией 3.х Для этого требуется выполнить следующее.

- Нажмите кнопку **Импортировать** откроется каталог *Methods,* в который следует предварительно записать все методы, предназначенные для импорта.
- Выберите требуемый метод и нажмите кнопку **Открыть** (**Open**) данные будут переписаны в файл внутреннего метода системы.

- Подключите источники данных, выполнив следующее.
 - В области **Подключенные источники данных** нажмите кнопку **Выбор** откроется окно **Источники данных** со списком каналов, по которым передаются хроматографические данные.

- В правом поле Доступны выделите строку # спектр и нажмите кнопку со стрелкой ←, при этом строка переместится в правое поле Подключены.
- Подключите, если требуется, телеметрические каналы системы насосов, установив флажок *Показать телеметрию*, далее выделив строку *БН* и выбрав требуемые каналы.
- Закройте окно Источники данных, нажав кнопку ОК.

Завершение создания системы

• Нажмите кнопку **Завершить** – окно **Создание новой системы** закроется, а окно созданной системы получит заголовок в соответствии с именем файла системы, указанным на первом этапе создания системы.

Окно системы

Окно системы имеет собственное меню, состоящее из 3 пунктов: **Система**, **Управление** и **Настройки**. Меню **Система** содержит команды для обращения к файлам систем, меню **Управление** предназначено для управления работой данной системы, меню **Настройки** позволяет пользователю изменять состав и режим запуска устройств, входящих в систему, а также вид окна системы.

- Для того чтобы изменить вид окна системы, выберите команду Настройка/Перестановка.
 - Для перемещения пиктограммы устройства установите на нее курсор, который при этом приобретает вид креста, нажмите левую кнопку мышки и передвиньте пиктограмму на новое место.
 - Для того чтобы передвинуть границу окна, установите на нее курсор и передвиньте границу требуемым образом.
- Для того чтобы увеличить или уменьшить окно системы с пропорциональным изменением всех пиктограмм, выберите команду Настройка/Увеличить или Настройка/Уменьшить.
 Процедуру можно повторять несколько раз. При выборе этих команд автоматически активируется команда Настройка/Перестановка.

Создание системы путем модификации

Выполняемые анализы могут отличаться друг от друга настройками и сценариями работы оборудования, а также методами обработки, получаемой хроматографической информации, в частности, набором определяемых компонентов. Все эти различия требуют для каждого случая создания собственной системы.

После создания первой системы следующие можно создавать более простым способом – путем модификации какой-либо ранее созданной системы. Для этого выполните следующее.

- Откройте наиболее подходящую систему.
- Запишите систему под новым именем, выбрав команду Сохранить как.
- Внесите необходимые изменения в настройки оборудования.
- Внесите необходимые изменения в метод и сохраните файл метода.
 - Ж Важно! Все изменения, вносимые в *систему* через команды меню окна системы, а также в настройки устройств через окна их драйверов, запоминаются автоматически. Изменения, вносимые в *метод*, необходимо сохранять, переписывая файл метода.

Дополнительная информация о системах – см. Приложение 2.

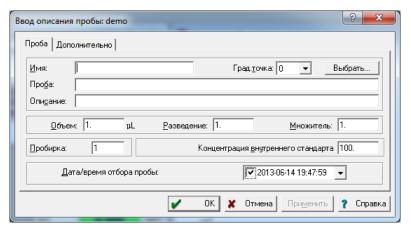
Создание системы с измененным составом оборудования нецелесообразно выполнять путем модификации, так как это может оказаться сложнее использования Мастера новых систем. Кроме того, Мастер предлагает поместить новую систему в собственную папку, что предпочтительно для систем с существенными отличиями.

Как получить первую хроматограмму

Выбор анализа для первой хроматограммы

В качестве первого рекомендуется выполнить анализ, не приводящий к каким-либо особенностям на хроматограмме, которые отвлекут внимание пользователя от освоения программы. Если предполагается проводить градуировку, целесообразно получить хроматограмму градуировочной смеси, содержащей все определяемые компоненты с известным порядком их выхода.

Запуск анализа


Процедуры запуска анализа выполняется из окна системы. Если в состав системы входит какое-либо оборудование, кроме виртуальных устройств, ознакомьтесь с правилами включения этого оборудования.

- Перед запуском первого анализа убедитесь, что в меню **Управление** установлена опция **Описание пробы** и НЕ установлена опция **Перезапуск**.
- Для того чтобы запустить анализ, выберите команду **Управление/Запустить анализ**. Если кнопка **Старт** активна, можно щелкнуть по ней мышкой.
- При запуске анализа запускаются все устройства, которые в окне **Режим запуска** были включены в список **Немедленный запуск**, начинается выполнение предшествующих инжекции процедур, а также открывается окно **Ввод описания образца**.

Окно Ввод описания образца содержит две страницы:

Проба, отличающийся от одноименной страницы окна **Паспорт** добавлением полей **Имя** и **Град.точка**:

Дополнительно, предназначенная для ввода дополнительной информации об образце, которая может использоваться при расчетах.

- Введите необходимую информацию.
 - Отредактируйте, если требуется, запись в поля **Имя**, введенную при создании метода.
 - Введите текстовую информацию о пробе в поля **Проба** и **Описание**.
 - Введите объем пробы в мкл.
 - Если предполагается выполнить несколько анализов с изменением разведения, например, для приготовления градуировочных смесей, введите значение в поле **Разведение**.
 - Если есть какие-либо дополнительные факторы, влияющие на количество вещества в пробе, например, величина навески, используемая для приготовления раствора, для исключения этого влияния введите соответствующую величину в поле Множитель. По смыслу этот параметр является величиной, обратной параметру Разведение.
 - При запуске первой хроматограммы поля **Град.точка**, **Кол-во внутреннего стандарта** и **Дата/время отбора пробы** редактировать не следует.
 - Ж Если производится анализ смеси известного состава, например, градуировочной, не следует заранее вносить в хроматограмму названия компонентов и их концентрацию для этого предусмотрена удобная полуавтоматическая процедура после получения хроматограммы, минимизирующая вероятность ошибок при вводе данных (см. раздел Как выполнить градуировку/Создание Таблицы компонентов).
- Закройте окно, нажав кнопку **ОК**. В окне хроматограммы будет продолжаться прием сигнала в режиме ожидания инжекции. В окне **Состояние системы** появится сообщение *Ожидание инжекции* (на *зеленом* фоне). Если используется автосамплер, дальнейшего вмешательства пользователя не требуется.
- При использовании ручного инжектора произведите ввод пробы. Предполагается, что подключение оборудования к компьютеру обеспечивает передачу сигнала о произведенной инжекции.

После поступления сигнала программа запускает прием данных, о чем свидетельствует изменение цвета фона окна — он становится голубым. В окне **Состояние системы** появляется сообщение *Инжекция сделана* (на *зеленом* фоне). Переход в режим приема данных означает, что вся информация, поступающая с этого момента, будет записана в файл хроматограммы. Одновременно запускаются все устройства, которые в окне **Режим запуска** были включены в список **Запуск после ввода пробы**.

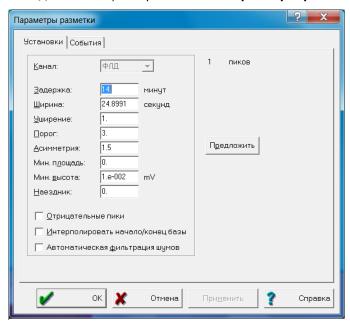
Прием хроматограммы

Во время приема хроматограммы, как правило, не требуется вмешательства пользователя. Однако он может изменять большинство параметров метода, которые непосредственно не касаются приема данных – изменять вид хроматограммы, редактировать текстовые поля и величины, используемые при обработке хроматограммы по ее окончании, и т.п. Если требуется, чтобы внесенные изменения использовались при последующих запусках системы, необходимо переписать метод, выбрав команду Файл/Записать/Метод или нажав кнопку

• Откройте окно **Настройка метода**, выбрав команду **Метод/Настройка метода** или нажав кнопку , перейдите на страницу **Обработка** и снимите флажок **Закрыть окно**, чтобы по окончании приема окно хроматограммы оставалось открытым для выполнения дальнейших настроек.

При получении первой хроматограммы может потребоваться увеличение или уменьшение установленной заранее продолжительности приема данных.

- Если момент окончания сбора данных приближается, а вышли пики еще не всех компонентов, для быстрой прибавки времени щелкните мышкой по кнопке *2′, прием данных продлится еще в течение 2 дополнительных минут.
- Если пики всех компонентов вышли, а прием данных еще продолжается, остановите хроматограмму, выполнив одно из следующих действий.
 - Остановите *прием данных*, нажав кнопку на панели инструментов главного окна или выбрав команду **Управление/Остановить сбор данных** в окне системы. При этом все оборудование будет продолжать работу, например, будет выполняться программа градиента.
 - Остановите выполнение анализа, нажав кнопку Стоп или выбрав команду Управление/Прекратить анализ в окне системы. При этом вместе с прекращением сбора данных будут остановлены устройства, для которых предусмотрена остановка по указанной команде.
- Увеличение или уменьшение продолжительности хроматограммы можно также произвести следующим способом.
 - Щелкните *правой* кнопкой мышки по пиктограмме самописца в окне системы и в открывшемся меню выберите команду **Открыть**.
 - В открывшемся окне **Самописец** измените величину в поле **Продолжительность**. В случае уменьшение длительности новая величина должна не менее, чем на 0.5 мин превышать истекшее время.
 - три изменении продолжительности хроматограммы через окно **Самописец**, а также при использовании кнопки ^{+2′} новое значение можно записать в метод, нажав кнопку (команда **Файл/Записать/Метод**).
 - Ж При *принудительной остановке* хроматограммы новое значение продолжительности НЕЛЬЗЯ записать, нажав кнопку
 ☐ изменение можно внести только при непосредственной записи в метод.


Завершение анализа

По окончании приема хроматограммы программа автоматически производит разметку (интегрирование) и записывает хроматограмму на диск. Для разметки используется алгоритм детектирования пиков по изменению первой производной (наклона) хроматографической кривой. Считается, что величина наклона свидетельствует о начале хроматографического пика, когда она превышает величину **Порог**, заданную в окне **Параметры разметки**, и о конце пика, когда становится меньше порога. Величины порога для определения начала и конца пика могут отличаться, их отношение устанавливается параметром **Асимметрия**. Для оптимизации

разметки пользователь также может задать ряд других параметров, для некоторых из которых предусмотрена специальная процедура подбора.

Настройка алгоритма интегрирования

• Если полученная по окончании хроматограммы разметка требует корректировки, нажмите кнопку кнопку (команда **Метод/Разметка**). Откроется окно **Параметры разметки**.

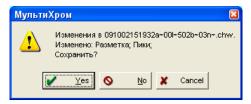
- Введите величину задержки, которая исключит начальный участок хроматограммы, где нет пиков определяемых компонентов, и нажмите кнопку **Применить** (**Apply**)⁵.
- Если хроматограмма записана с большим уровнем шума, установите флажок **Автоматическая фильтрация шумов** (при это не должен быть установлен флажок **Интерполировать начало/конец базы**).
- Если в ПО включена опция *Программный фильтр предельного подавления шумов*, фильтрация будет производиться с использованием адаптивного фильтра, при отсутствии этой опции фильтра Савицкого-Голея. В последнем случае не рекомендуется использовать автоматическую фильтрацию при явно выраженной асимметрии пиков, например, для *капиллярного электорофореза*.
- Нажните кнопку **Предложить**. Программа введет в поля **Ширина** (ширина на половине высоты пика в начале хроматограммы) и **Уширение** (отношение ширин пиков в конце и начале хроматограммы) величины, которые в первом приближении соответствуют линейной аппроксимации наблюдаемого изменения ширины пиков на всем протяжении хроматограммы⁶. Нажмите кнопку **Применить**.
- Повторите комбинацию **Предложить**/**Применить** 2-3 раза для оптимизации параметров. В этом случае часто удается получить приемлемые результаты разметки, даже если исходные параметры были далеки от оптимальных.

⁵ Задание задержки является необходимым условием использования автоматической процедуры оптимизации параметров, так как при этом исключаются «неправильные» пики, учет которых может исказить разметку в области анализа.

⁶ Если величина задержки не задана, кнопка **Предложить** становится недоступной, при этом программа устанавливает среднее по всем пикам значение полуширины и уширение, равное 1.

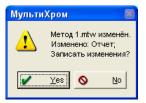
- Если результат по-прежнему неудовлетворительный, попробуйте изменять параметры, влияющие на определение начала и конца пика.
 - Подберите оптимальное значение параметра в поле **Порог**. Разумная величина параметра **Порог** находится в пределах от 0.5 до 5 (по умолчанию устанавливается значение 3). Меньшее значение данного параметра обеспечивает большее количество найденных пиков.
 - Для оптимизации детектирования конца пиков подберите величину параметра **Асимметрия**.
- Если программа размечает мелкие нежелательные пики, установите параметр **Мин. высота** чуть больше, чем высота этих пиков. Для этой цели можно также использовать и параметр **Мин. площадь**, однако в этом случае труднее оценить требуемое значение параметра.
- Если настройка набора параметров интегрирования не приводит к приемлемой разметке хроматограммы, могут применяться два подхода для достижения желаемого результата: редактор пиков (изменение разметки вручную) и события интегрирования. Настройка алгоритма разметки с использованием событий интегрирования имеет смысл, если ожидается ряд хроматограмм со сходными, повторяющимися особенностями базовой линии. В противном случае используется ручная коррекция с помощью Редактора пиков (см. Приложение 3).
- Следует иметь в виду, что в ряде случаев (сложная форма базовой линии, плохое разделение хроматографических пиков, малые пики-наездники, высокий уровень шумов, и т.д.) никакой алгоритм не может гарантировать корректную разметку на пики, поскольку само понятие "пик" во многом субъективно и зависит от конкретно решаемой задачи. В таких случаях правильность получаемых результатов во многом зависит от опыта оператора, и даже при визуально хорошей разметке нельзя исключить наличие неучтенных погрешностей.

Перезапись хроматограмм и внесение изменений в метод


Сохранение изменений, сделанных во время приема хроматограммы

Все изменения, которые были сделаны во время приема хроматограммы, автоматически записываются при ее окончании, однако не вносятся в метод.

• Для внесения в метод изменений, внесенных в хроматограмму во время приема данных, нажмите кнопку ...


Сохранение изменений, сделанных по окончании хроматограммы

Если хроматограмма была изменена после ее автоматической записи по окончании приема, в ее заголовке появляется отметка *. При закрытии такой хроматограммы появляется запрос с указанием имени хроматограммы и характера сделанных изменений:

- Для того чтобы изменения были сохранены, нажмите кнопку **Да** (**Yes**). При этом по умолчанию будет записан новый файл, а старый будет удален.
 - Ж Если требуется, чтобы старый файл хроматограммы сохранялся автоматически или по запросу, следует изменить настройки в окне Общие настройки, которое открывается одноименной командой из меню Настройка. В этом же окне можно установить режим внесения изменений в файл метода.

После сохранения хроматограммы появляется запрос с указанием имени файла метода и характера сделанных изменений:

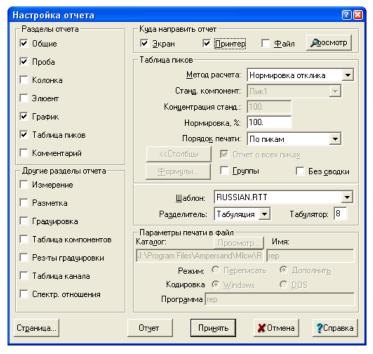
• Для того чтобы все последующие хроматограммы обрабатывались так же, как последняя хроматограмма, нажмите кнопку **Да** (**Yes**).

Простейший вариант обработки и оформления результатов

В настоящем разделе рассматривается последний этап обработки хроматограммы – выдача полученных результатов в форме *простого* отчета.

• Если далее предполагается выполнять градуировку, ознакомьтесь с разделами Получение простого отнета с использованием метода Нормировка отклика и О других методах расчета и далее перейдите к разделу Как выполнить градуировку.

Задачи по определению относительного содержания компонентов, для которых чувствительность детектора одинакова, может быть решена простым измерением площадей хроматографических пиков без проведения процедуры градуировки. Для такого случая в ПО МультиХром предусмотрен специальный метод расчета, называемый Нормировка отклика. Он позволяет определить абсолютные величины площадей пиков, а также их относительные величины в % от суммы всех измеренных площадей.


Такой метод можно использовать, когда в анализируемых смесях всегда присутствуют все компоненты и их пики значительно больше возможных посторонних пиков, которые при этом условии могут быть надежно исключены при разметке подбором параметров Мин. высота и/или Мин. площадь (см. раздел Настройка алгоритма интегрирования). В этом случае компонент может быть однозначно связан с номером пика и, если нет необходимости выводить в отчет названия компонентов, результаты определения площади пиков могут быть выданы в виде простейшего варианта отчета⁷.

Получение простого отчета с использованием метода Нормировка отклика

Для проведения расчета относительных площадей пиков выполните следующее.

• Нажмите кнопку . (команда **Отчет/Настроить и сделать простой отчет**). Откроется окно **Опции отчета**.

⁷ Для того чтобы в отчете появилась информация о компонентах, необходимо предварительно создать Таблицу компонентов (см. Создание Таблицы компонентов).

- В поле Метод расчета выберите значение Нормировка отклика.
- В списке **Разделы отчета** установите требуемые флажки. Для начала рекомендуется ограничится набором **Общие**, **Проба**, **График**, **Таблица пиков**.
- В области **Куда направить отчет** установите флажок **Экран**. Для одновременной с выводом на экран распечатки отчета установите также флажок **Принтер**.
- Нажмите кнопку **Отчет**. Откроется окно отчета с данными, введенными на станицы **Общее** и **Проба** окна **Настройки метода** и *Таблицей пиков*, содержащей строки для всех отмеченных пиков. Та же информация, дополненная графиком хроматограммы, будет направлена для печати на принтер.
- Если требуется, чтобы в дальнейшем настроенный простой отчет выдавался автоматически по окончании хроматограммы, Откройте окно Настройка метода, выбрав команду Метод/Настройка метода или нажав кнопку , перейдите на страницу Обработка и установите флажок Сделать также простой отчет по окончании хроматограммы.

О других методах расчета

При создании простого отчета можно использовать несколько методов расчета, оптимизированных для ряда стандартных задач. Все эти методы требуют предварительного создания **Таблицы компонентов**, так как при выполнении расчетов для каждого компонента используются индивидуальные параметры, которые получаются при проведении *градуировки* или вводятся пользователем.

Внутренняя нормализация — определение относительного содержания компонентов, для которых чувствительность детектора различна;

Абсолютная концентрация — определение абсолютной и относительной концентрации компонентов;

Отиносительная концентрация — определение абсолютной и относительной концентрации компонентов с использованием внутреннего стандарта;

Индекс – определение *индексов* компонентов;

Тест колонки — определение параметров колонки и хроматографического процесса в целом.

Для каждого из этих методов определен фиксированный набор параметров, которые выводятся в отчете в столбцах *Таблицы пиков*. Кроме того, можно использовать *Заказной* метод расчета, который дает пользователю возможность выбрать столбцы, включаемые в **Таблицу пиков**, по своему усмотрению.

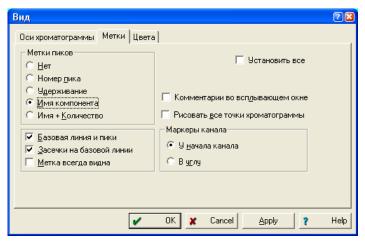
- Ознакомьтесь со списком параметров, которые могут быть включены в Таблицу пиков.
 - В окне **Опции отчета** в поле **Метод расчета** выберите значение *Заказной*.
 - Нажмите кнопку **Столбцы**, при этом в левом поле окна **Опции отчета** откроется список столбцов. Для включения какого-либо параметра в отчет соответствующая строка должна быть выделена.

Как выполнить градуировку

Градуировка⁸ - это подготовительная процедура, необходимая для проведения качественного и количественного анализа смеси неизвестного состава. Процедура градуировки имеет две цели.

- Определить времена удерживания (объемы удерживания, индексы удерживания) анализируемых компонентов. Эта информация требуется для последующей идентификации компонентов в смеси неизвестного состава (качественный анализ смеси).
- Определить градуировочные коэффициенты, связывающие отклик детектора (высоту или площадь пика) и концентрацию каждого компонента в пробе. Эта информация нужна для расчета концентраций компонентов в анализируемой пробе (количественный анализ).

Как правило, обе цели достигаются одновременно, путем получения и обработки *градуировочных* хроматограмм смесей, имеющих известный качественный и количественный состав.

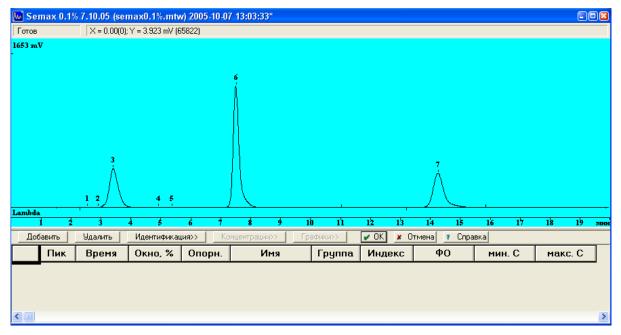

В программе *МультиХром* результаты градуировки хранятся в *методе* для обработки получаемых с его помощью хроматограмм, а также записываются в каждую *хроматограмму*.

Первый этап: ввод данных градуировочных образцов

Ввод данных градуировочных образцов производится в первую градуировочную хроматограмму. Для этого создается **Таблица компонентов**, которая необходима для идентификации пиков, и **Таблица концентраций**, которая требуется для проведения градуировки.

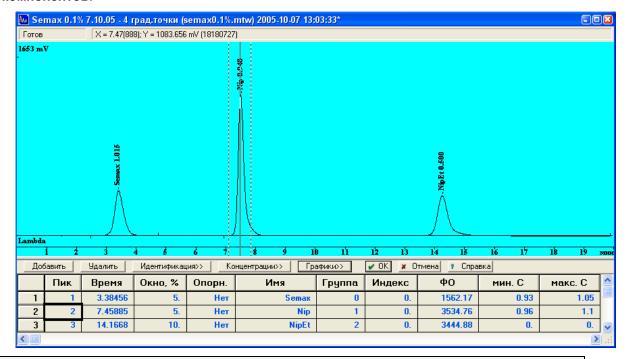
- Для удобства визуального контроля при выполнении дальнейших процедур введите в качестве метки пика вместо номера имя компонента, выполнив следующее.
 - Выберите команду Вид/Вид или нажмите кнопку ... Откроется окно Вид.
 - Щелкните мышкой по закладке Метки.

⁸ Иногда вместо термина *градуировка* в литературе, особенно в зарубежной или переводной, используется термин *калибровка* (*calibration*).



- Щелкните мышкой по переключателю **Имя компонента**.
- Нажмите кнопку **ОК**. Окно **Вид** закроется. До тех пор, пока не будет создана **Таблица** компонентов, метками по-прежнему будут номера пиков. В дальнейшем метки-номера сохраняются только для неидентифицированных пиков.

Создание Таблицы компонентов


Таблица компонентов содержит для каждого компонента ряд параметров, важнейшими из которых являются *имя*, *ожидаемое время удерживания* и *фактор отклика* (ФО). Для создания **Таблицы компонентов** выполните следующее.

• На панели инструментов нажмите кнопку (команда Метод/Градуировка/Компоненты). В нижней половине окна появится пустая Таблица компонентов, имеющая собственную панель кнопок, дублирующих ряд команд меню Метод/Градуировка.

- Щелкните по кнопке **Добавить**. Курсор автоматически установится на первом пике, при этом в таблице появится первая строка, содержащая в столбце *Время* значение времени удерживания этого пика, а в столбце *Имя Пик* 1.
- Повторите процедуру для всех размеченных пиков. По мере добавления строк курсор будет устанавливаться на соответствующем пике.

- Для пиков, соответствующих входящим в смесь компонентам, введите имена компонентов в столбце *Имя*.
- Если на хроматограмме есть пики, не относящиеся ни к одному из компонентов, удалите соответствующие строки, используя кнопку **Удал.** или оставьте в них пустой ячейку *Имя* в этом случае эти строки будут автоматически удалены при закрытии **Таблицы** компонентов.

- Для некоторых задач не требуется измерять абсолютную концентрацию компонентов, а достаточно определить только их относительное содержание в смеси. Эту процедуру можно выполнить без проведения градуировки в двух случаях:
- если ФО для всех компонентов равны в этом случае при создании отчета используется метод расчета *Нормировка отклика*;
- если есть литературные или ранее измеренные значения ФО для всех компонентов в этом случае они вводятся вручную в столбец ФО **Таблицы компонентов**, а при создании отчета используется метод расчета *Внутренняя нормализация*.
- Если далее не предполагается проводить градуировку, закройте **Таблицу компонентов**, щелкнув по кнопке **ОК** и сохраните ее в методе, нажав кнопку ...

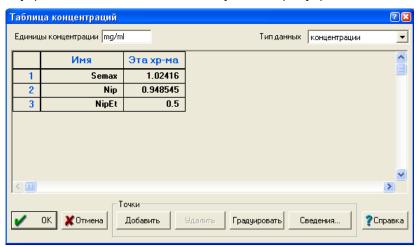
Создание Таблицы концентраций

Таблица концентраций предназначена для ввода информации о количестве используемых градуировочных смесей и концентрациях содержащихся в них компонентов. Создание Таблицы концентраций является первым шагом при проведении градуировки. Рекомендуется в первой же хроматограмме создавать полную Таблицу концентраций, содержащую данные всех градуировочных смесей — именно такая процедура описана в данном разделе. В этом случае для получения остальных градуировочных хроматограмм можно использовать автоматический перезапуск или процедуру очереди, что особенно удобно при работе с автосамплером. При ручном запуске каждой градуировочной хроматограммы допустимо также добавлять ее данные после ее получения.

Таблица концентраций может создаваться только на основе ранее созданной **Таблицы компонентов**!

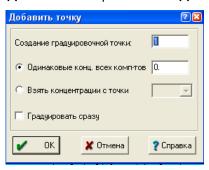
Для создания Таблицы концентраций выполните следующее.

- Откройте окно Таблица концентраций одним из следующих способов.
 - Если открыта Таблица компонентов, нажмите кнопку Концентрации>>.
 - Не открывая окно Таблицы компонентов, выберите команду Метод/Градуировка /Концентрации.


Первоначально Таблица концентраций состоит только двух столбцов, содержимое которых недоступно для редактирования:

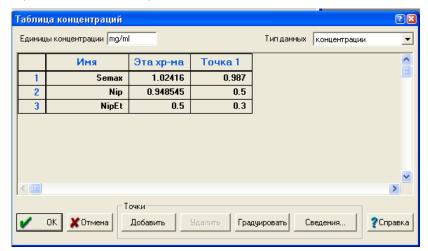
Имя

Имя компонента. В **Таблицу концентраций** автоматически включаются все компоненты, заданные в **Таблице компонентов**;


Эта хр-ма

Концентрация компонентов 9 , рассчитанная для данной хроматограммы с использованием величины ΦO из **Таблицы компонентов**, а после проведения градуировки — с использованием полученной градуировочной зависимости.

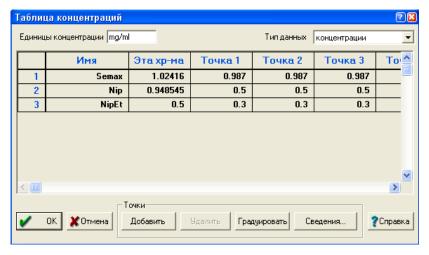
Для каждой градуировочной смеси в **Таблицу концентраций** требуется добавить столбец, соответствующий *градуировочной точке*.


- Создайте первую градуировочную точку, соответствующую данной хроматограмме.
 - Щелкните мышью по кнопке Добавить. Откроется окно Добавить точку.

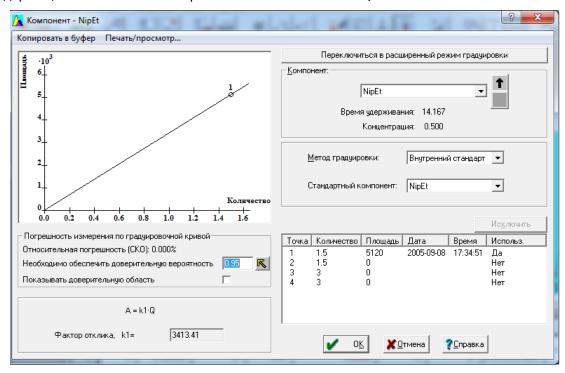
• Если концентрации всех компонентов одинаковы, введите значение в поле Одинаковые конц. для всех комп-тов.

⁹ В некоторых случаях в этом столбце выводятся другие величины, в зависимости от выбранного метода расчета (см. раздел *О других методах расчета*): для *Нормализации отклика* - % от суммарной площади пиков, для *Внутренней нормализации* – % от суммарной концентрации компонентов, для *Внутреннего стандарта* — концентрация, определяемая с учетом внутреннего стандарта.

- В Таблице концентраций все концентрации указываются для исходной смеси, без учета разведения, которое вводится в окне Ввод описания пробы.
 - Если полученная хроматограмма соответствует первой градуировочной точке, установите флажок **Градуировать сразу**, при этом данные хроматограммы будут автоматически включены в градуировку.
 - Нажмите кнопку **ОК**. Окно закроется, а в **Таблице концентраций** справа добавится столбец *Точка 1*.
 - Если концентрации компонентов различны, введите их в столбец Точка 1.



- Добавьте описанным способом необходимое количество градуировочных точек с учетом следующего.
 - Флажок **Градуировать сразу** может быть установлен только для одной точки, которая должна соответствовать данной хроматограмме¹⁰.
 - Если для градуировки несколько раз используется одна и та же градуировочная смесь, в том числе, дополнительно разведенная, достаточно ввести концентрации для одной такой точки, а дальше применять копирование, устанавливая для следующих точек флажок Взять концентрации с точки с указанием номера точки-образца в соответствующем поле.
- Если для уменьшения случайной погрешности предполагается получить несколько градуировочных хроматограмм одной и той же смеси, для каждой из них создается отдельная градуировочная точка.


 Если все градуировочные смеси готовятся разведением одной исходной, все столбцы в

Таблице концентраций оказываются одинаковыми.

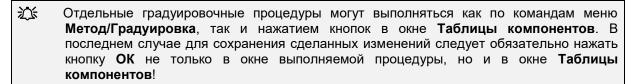
¹⁰ Процедуру отнесения хроматограммы к какой-либо заранее созданной точке можно также выполнить позже с помощью команды **Обработка/Градуировать**.

- Для удаления градуировочной точки выделите в соответствующем столбце любую ячейку и нажмите кнопку **Удалить**.
- Для того чтобы в отчете в **Таблице пиков** указывались используемые единицы концентрации, отредактируйте, если требуется, значение в поле **Единицы**. Это поле является справочным, и при изменении единиц никакие пересчеты не производятся.
- Нажмите кнопку ОК. Окно Таблица концентраций закроется.
- Нажмите кнопку **Графики** на панели **Таблицы компонентов**. Откроется окно **Компонент**, содержащее в заголовке имя первого компонента из **Таблицы компонентов**.

 В окне представлена градуировочная зависимость для текущего компонента с единственной точкой, соответствующей данной хроматограмме. График аппроксимируется линейной зависимостью, проходящей через 0. Полученный коэффициент к1 (фактор отклика) представлен в поле под графиком.

Для градуировки по умолчанию используется метод *Внешний стандарт*, предполагающей независимость градуировок всех компонентов, при ознакомлении с программой рекомендуется использовать именно его. В дальнейшем пользователь может

перейти к методу Внутренний стандарт, выбрав стандартный компонент в одноименном списочном поле.



Для пользователей версии *МХ 1.5x*:

В версии 3.х по умолчанию предлагается упрощенный режим градуировки. Для того чтобы перейти в режим градуировки. более похожий на привычный. нажмите кнопку Перейти в расширенный режим градуировки. Дополнительно в преобразованном окне необходимо поменять местами оси координат, выбрав в поле Перестановка осей значение Отклик-Концентрация.

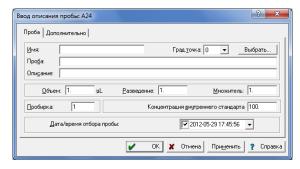
В расположенном внизу справа списке градуировочных точек представлены все созданные точки, но только для первой введена полная информация: измеренная площадь пика компонента и данные о дате и времени запуска хроматограммы¹¹. Для этой точки в столбце **Использ.** установлено значение $\mathcal{L}a$, что означает, что она используется для построения градуировочной зависимости. Значения Да/Нет устанавливаются автоматически в зависимости от наличия/отсутствия данных о площади пика.

- Просмотрите листы всех компонентов, используя для их перебора кнопки 🔳 и 🖳 рядом со списочным полем Компонент в правом верхнем углу окна. Можно также перейти к любому компоненту выбором в этом поле.
- Закройте окно Компонент, нажав кнопку ОК.
- Закройте Таблицу компонентов, нажав кнопку ОК.

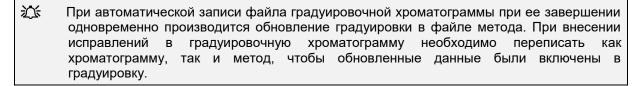
Сохраните сделанные изменения в методе, нажав кнопку 🖶.

Второй этап: получение набора градуировочных хроматограмм

Получение хроматограмм перезапуском системы вручную

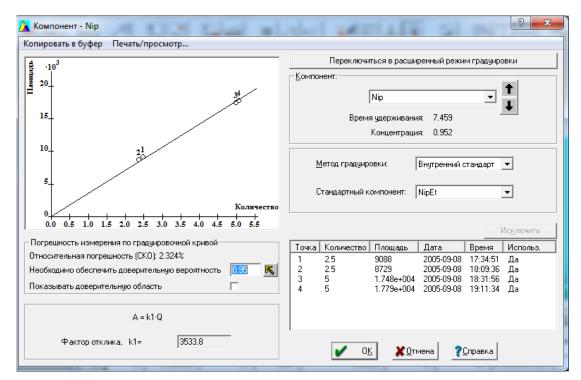

Процедура градуировки после записи Таблицы компонентов и Таблицы концентраций в метод состоит в последовательных запусках системы с указанием номера градуировочной точки, к которой относится запускаемая хроматограмма.

Получение хроматограмм


Для получения очередной градуировочной хроматограммы выполните следующее.

- Запустите анализ, выбрав команду Управление/Запустить анализ или нажав кнопку Старт.
- В окне Ввод описания пробы внесите следующие изменения.
 - В списочном поле **Град.точка** выберите номер градуировочной точки.
 - Отредактируйте, если требуется, поля Имя, Проба, Описание, Разведение и др.

 $^{^{11}}$ Данные о времени и дате запуска хроматограммы служат идентификатором хроматограммы, так как они включаются в заголовок ее окна, а также в имя файла хроматограммы (первые 12 знаков).



- Введите пробу и получите хроматограмму.
- По окончании приема данных убедитесь, что все ожидаемые пики на хроматограмме размечены, не имеют искажений и идентифицированы правильно. При наличии каких-либо ошибок внесите необходимые исправления в разметку или идентификацию пиков.
 - Если какие-либо пики не размечены из-за их малой величины, откорректируйте разметку (см. раздел *Настройка алгоритма интегрирования*), в частности, измените или отмените полностью ограничения по высоте или площади пика, если они ранее были установлены.
 - Обратите внимание на наличие пиков с искажениями, которые приводят к неправильному определению площади и высоты пика (например, из-за выхода за пределы линейности детектора): при построении градуировочной зависимости точки, соответствующие таким пикам, должны быть исключены (см. ниже).
 - При наличии ошибок в идентификации компонентов внесите необходимые изменения.

Проверка и корректировка градуировочной зависимости

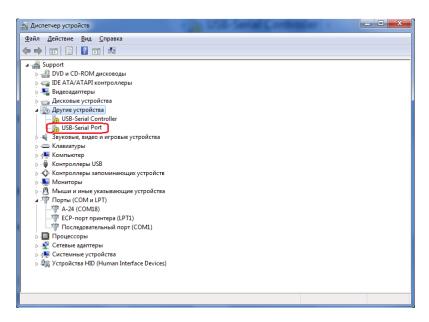
• По окончании приема последней хроматограммы откройте окно **Компонент**, в котором будет представлена полная градуировочная зависимость для первого компонента.

- Убедитесь визуально в отсутствии грубых ошибок при вводе данных, которые проявляются в том, что одна или несколько точек плохо ложатся на градуировочную прямую.
 - Если есть точка с неправильно измеренной *площадью* (из-за искажения формы пика), исключите ее: в списке хроматограмм в правой половине окна выделите соответствующую строку и нажмите кнопку **Использ**. при этом в столбце **Использ**. появится значение *Hem*.
 - Если были допущены ошибки при вводе значений концентрации в Таблице концентраций, внесите исправления и проверьте результат по градуировочному графику.

Если неправильно введен номер градуировочной точки или были допущены ошибки при вводе параметров, которые используются для расчета количества: Объем, Разведение, Множитель на листе Проба окна Настройки метода¹², внесите необходимые исправления при выполнении пакетного пересчета градуировочной зависимости.

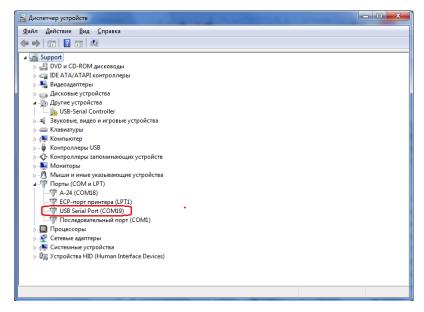
- Произведите проверку для всех компонентов.
- При отсутствии каких-либо отклонений градуировку можно считать законченной. В противном случае примите меры по исправлению ошибок.

¹² Эти параметры для всех градуировочных хроматограмм одновременно можно просмотреть в **Таблице концентраций**, нажав кнопку **Сведения**.


Приложения

Приложение 1. Использование USB-COM-конвертера

При подключении к USB-порту компьютера USB-COM-конвертера создается виртуальный <u>COM-порт. Этот порт имеет очередной номер, зависящ</u>ий от предшествующей истории установки COM-портов на данном компьютере. Если такая процедура производилась неоднократно, рекомендуется перед подключением к компьютеру USB-COM-конвертера открыть список **Порты (COM LPT)** в окне **Диспетчер устройств** (открывается через меню **Пуск/Панель управления**), чтобы сразу определить номер нового порта, к которому будет подключаться оборудование.


Процедура создания нового СОМ-порт выполняется, только если на компьютере установлен соответствующий драйвер.

- Если на компьютере ранее уже использовался USB-COM-конвертер того же типа, при подключении еще одного конвертера новый COM-порт создается автоматически.
- Если USB-COM-конвертер подключается к компьютеру, имеющему соединение с Интренетом, автоматически производится поиск и установка требуемого драйвера, при этом на экране появляется окно с соответствующим сообщением. СОМ-порт создается автоматически.
- Если USB-COM-конвертер подключается к компьютеру, НЕ имеющему соединения с Интренетом, необходимо выполнить следующее.
 - Установите в дисковод поставочный диск.
 - Через меню Пуск/Панель управления откройте окно Диспетчер устройств.

- ◆ Щелкните правой кнопкой мыши по пункту Другие устройства/USB-Serial Port и в открывшемся меню выберите команду Обновить драйверы...
- В открывшемся окне выберите пункт **Выполнить поиск драйверов на этом компьютере**.

- В следующем окне нажмите кнопку **Обзор** и выберите папку **Драйвер конвертера** на поставочном диске, затем нажмите кнопку **Далее**.
- После установки драйвера в окне **Диспетчер устройств** появится новый СОМпорт. Его номер будет зависеть от предшествующей истории установки СОМпортов.

Приложение 2. Некоторые свойства систем Как открыть систему

Для того чтобы открыть систему, выполните одно из следующих действий.

- Для открытия любой системы выберите команду меню рабочего стола **Файл/Открыть/Система**, затем в открывшемся каталоге *Systems* выберите каталог, в котором находится требуемая система, и откройте его.
- Если на рабочем столе открыто окно какой-либо системы и требуется открыть систему из того же каталога, выполните следующее.
 - ◆ Если нужно открыть дополнительно еще одну систему, в меню окна Система выберите команду Система/Открыть другой.
 - Если нужно заменить на рабочем столе ранее открытую систему, в меню окна Система выберите команду Система/Сменить.

Система, которая открывается *дополнительно*, находится в *отключенном* состоянии. Система, *сменяющая* другую, находится *в том же* состоянии, что и исходная.

Состояние системы: Подключено/Отключено

Важной особенностью системы является то, что после открытия файла системы она может находиться либо в подключенном, либо в отключенном состоянии. Подключенная система готова к запуску анализа. При обращении к отключенной системе производится проверка, не используется ли входящие в нее оборудование другой, подключенной, системой, и только если оно не занято, система переходит в подключенное состояние. Такой подход важен для систем, управляющих оборудованием, при работе с чисто интегрирующей системой достаточно иметь в виду следующее:

на пиктографическом меню рабочего стола представлены кнопки только *подключенных* систем, их число ограничено условиями приобретенной лицензии (для оборудования *Люмэкс* – одна система):

окно *подключенной* системы может быть закрыто без отключения системы — чтобы открыть окно, следует шелкнуть по кнопке системы на пиктографическом меню;

открытое окно может соответствовать *отключенной* системе, при этом в нем отсутствуют кнопки **Старт-Стоп**, и для запуска анализа следует выбрать команду **Управление/Запустить анализ**, при этом система автоматически переходит в подключенное состояние;

если допустимое число *подключенных* систем исчерпано, то при попытке подключить еще одну систему появится соответствующее сообщение, и для запуска этой системы потребуется отсоединить одну из ранее подключенных.

Подключение и отключение системы производится с помощью команд **Подключиться** и **Отключиться** меню **Управление**.

Особенности работы в режиме перезапуска хроматограмм

Как установить режим перезапуска анализа

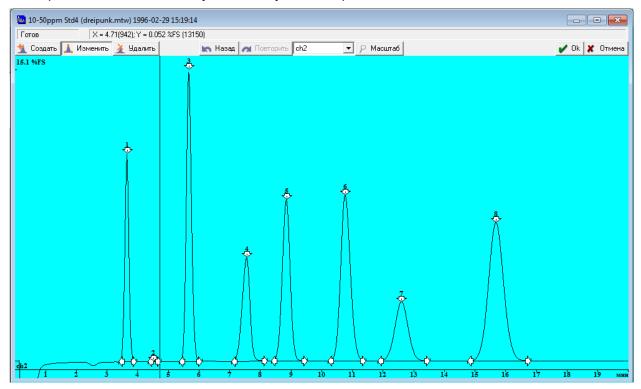
Для того чтобы после завершения хроматограммы запуск следующей производился автоматически, выполните следующее.

- В меню Управление окна системы установите опцию √Перезапуск.
- Если при каждом перезапуске не требуется вводить информацию в окно **Ввод описания образца**, в том же меню **Управление** отмените опцию **Описание пробы**.
- Для того чтобы на рабочем столе не накапливались открытые окна хроматограмм, на странице Настройка метода/Обработка установите опцию Закрыть окно.
- Ж Важно! При перезапуске программа каждый раз обращается к файлу метода, записанному на диске. То есть, изменения, внесенные пользователем в хроматограмму во время ее приема, не воспроизводятся при перезапуске. Для того чтобы следующая хроматограмма обрабатывалась с изменениями, необходимо после их внесения, до окончания приема хроматограммы, записать метод, выбрав команду
 - Файл/Записать/Метод или нажав кнопку
- Если производится градуировочный анализ, т.е. при запуске хроматограммы указывается номер градуировочной точки, то метод и градуировка обновляются автоматически по окончании анализа.

Как остановить работу системы, если установлен перезапуск.

Для того чтобы прервать процедуру перезапуска хроматограмм, выполните следующее.

- Если открыто окно **Ввод описания образца**, нажмите кнопку **ОК**, затем остановите прием данных.
- Остановите прием данных, выполнив одно из следующих действий.
 - Закройте окно хроматограммы, нажав кнопку
 - В окне системы выберите команду **Управление/Прекратить анализ** или нажмите кнопку **Стоп**.
- Ж Важно! Следующие действия останавливают прием данных *с последующим* перезапуском анализа:
 - в окне системы выбор команды Управление/Остановить сбор данных;
 - на пиктографическом меню нажатие кнопки или выбор команды Завершить.


К перезапуску приводит также нажатие кнопки **Отменить** (**Cancel**) в окне **Ввод описания образца**.

Приложение 3. Редактор пиков

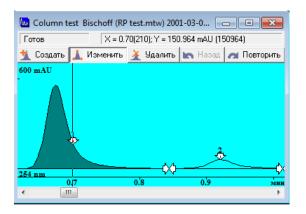
В режиме **Редактор пиков** пользователь может вручную добавлять и удалять пики, а также перемещать их границы и вершины.

Все процедуры выполняются с помощью мыши. При выполнении процедур удаления, добавления или изменения пиков в окне появляется курсор, следующий за перемещением мыши. От выполненной процедуры можно отказаться, а также после этого восстановить. Можно последовательно отказаться от ряда выполненных процедур, а затем восстановить все или часть ряда.

• Для перехода в режим ручного редактирования пиков выберите команду **Обработка** /Редактор пиков или нажмите кнопку . При этом в окне хроматограммы появляется дополнительная панель, содержащая группу кнопок **Создать**, **Изменить**, **Удалить**, кнопки **Назад** и **Повторить**, поле для выбора канала, используемое для многоканальных хроматограмм, а также кнопки **Масштаб**, **ОК**, **Отменить**. Все точки начала, конца и вершины каждого пика получат отметку в виде стрелки.

- Для более точного внесения исправлений в разметку перейдите к более крупному масштабу изображения корректируемого участка хроматограммы.
 - Выделите участок графика при нажатой *правой* кнопке мыши он будет увеличен до размера всего окна.
 - Для растяжения/сжатия хроматограммы по вертикали используйте клавиши ↑/↓, для передвижения всего графика по вертикали – клавиши PgUp/PgDn. Восстановление размеров по вертикали производится командой Вид/Все по вертикали или клавишами Ctrl+End.
 - Для растяжения/сжатия хроматограммы по *горизонтали* используйте клавиши [→]/[←]. Если в окне представлен некоторый участок хроматограмм, внизу появляется полоса прокрутки, с помощью которой выделенный участок можно

- перемещать вдоль графика. Восстановление размеров по горизонтали производится командой **Вид/Все по горизонтали** или клавишами *Ctrl+Home*.
- При нажатой *правой* кнопке мыши *дважды* щелкните в окне хроматограммы восстановится полный размер хроматограммы. С той же целью можно нажать кнопку или использовать клавиши *Alt+V*.
- ◆ Для получения подсказки нажмите кнопку Масштаб, при этом откроется окно с соответствующим текстом.


Как удалить или добавить пики

- Для того чтобы удалить пик, выполните следующее.
 - Нажмите кнопку Удалить.
 - Установите курсор в любую точку пика, который требуется удалить.
 - Нажмите левую кнопку мыши и, не отпуская ее, начните перемещать курсор, при этом весть пик будет выделен цветом.
 - Отпустите кнопку мыши в любой момент после выделения, при этом весь пик будет удален.
 - Чтобы сразу удалить ряд последовательных пиков, перемещайте курсор, не отпуская кнопку до тех пор, пока не будут выделены все пики, подлежащие удалению.
- Для того чтобы добавить пик, выполните следующее.
 - Нажмите кнопку Создать.
 - Установите курсор в точку начала или конца пика.
 - Нажмите кнопку мыши и, не отпуская ее, переместите курсор до конечной или соответственно начальной точки пика. По мере перемещения будет производиться текущая разметка выделенного участка: отмечаться начало, вершина и конец пика, его площадь будет выделяться цветом.
 - Чтобы сразу создать группу смежных пиков, отпускайте кнопку мыши в момент прохождения точки, где должна быть долина.
 - Если обе точки создаваемого пика находятся на склоне существующего пика, будет создан пик-наездник. Если точки расположены с двух сторон от вершины, никаких изменений не произойдет новый пик не создается, а границы существующего остаются на месте.

Как переместить границы или вершину пиков

Для того чтобы переместить границы или вершину пиков, выполните следующее.

- Нажмите кнопку Изменить.
- Установите мышью курсор на стрелку, соответствующую перемещаемой точки.
- Нажмите кнопку мыши и, не отпуская ее, переместите точку на новое место и отпустите кнопку.

Как из смежных пиков сделать пик с пиком-наездником

Из смежных пиков можно сделать пик с пиком-наездником, двумя способами.

- При использовании первого способа выполните следующее.
 - Нажмите кнопку **Изменить**.
 - В долине установите курсор на стрелке со стороны основного пика.
 - Нажмите кнопку мыши и, не отпуская ее, переместите точку через пик, преобразуемый в наездник, за его пределы, затем отпустите кнопку.
 - Откорректируйте новые границы основного пика и пика-наездника.
- При использовании второго способа выполните следующее.
 - ◆ Нажмите кнопку Удалить и удалите оба пика.
 - Нажмите кнопку **Создать** и создайте один пик, перекрывающий область обоих пиков. Созданные при этом начальная и конечная точки будут началом и концом основного пика.
 - Создайте второй пик таким образом, чтобы его начальная и конечная точки не выходили за пределы основного пика и лежали по одну строну от его вершины.
 - Откорректируйте новые границы основного пика и пика- наездника.
 - На склоне основного пика можно создать несколько пиков-наездников, расположенных строго последовательно.